eap.confの変更
オリジナルファイルの変更すべき箇所を文字の色を変えて表示します。
- コメントアウトする行
- コメントアウトから戻す行
- 機関に合わせて変更すべき箇所
- 削除する行
- 追加する行
# -*- text -*-
##
## eap.conf -- Configuration for EAP types (PEAP, TTLS, etc.)
##
## $Id$
#######################################################################
#
# Whatever you do, do NOT set 'Auth-Type := EAP'. The server
# is smart enough to figure this out on its own. The most
# common side effect of setting 'Auth-Type := EAP' is that the
# users then cannot use ANY other authentication method.
#
# EAP types NOT listed here may be supported via the "eap2" module.
# See experimental.conf for documentation.
#
eap {
# Invoke the default supported EAP type when
# EAP-Identity response is received.
#
# The incoming EAP messages DO NOT specify which EAP
# type they will be using, so it MUST be set here.
#
# For now, only one default EAP type may be used at a time.
#
# If the EAP-Type attribute is set by another module,
# then that EAP type takes precedence over the
# default type configured here.
#
default_eap_type = md5
# A list is maintained to correlate EAP-Response
# packets with EAP-Request packets. After a
# configurable length of time, entries in the list
# expire, and are deleted.
#
timer_expire = 60
# There are many EAP types, but the server has support
# for only a limited subset. If the server receives
# a request for an EAP type it does not support, then
# it normally rejects the request. By setting this
# configuration to "yes", you can tell the server to
# instead keep processing the request. Another module
# MUST then be configured to proxy the request to
# another RADIUS server which supports that EAP type.
#
# If another module is NOT configured to handle the
# request, then the request will still end up being
# rejected.
ignore_unknown_eap_types = no
# Cisco AP1230B firmware 12.2(13)JA1 has a bug. When given
# a User-Name attribute in an Access-Accept, it copies one
# more byte than it should.
#
# We can work around it by configurably adding an extra
# zero byte.
cisco_accounting_username_bug = no
#
# Help prevent DoS attacks by limiting the number of
# sessions that the server is tracking. Most systems
# can handle ~30 EAP sessions/s, so the default limit
# of 2048 is more than enough.
max_sessions = 2048
# Supported EAP-types
#
# We do NOT recommend using EAP-MD5 authentication
# for wireless connections. It is insecure, and does
# not provide for dynamic WEP keys.
#
md5 {
}
# Cisco LEAP
#
# We do not recommend using LEAP in new deployments. See:
# http://www.securiteam.com/tools/5TP012ACKE.html
#
# Cisco LEAP uses the MS-CHAP algorithm (but not
# the MS-CHAP attributes) to perform it's authentication.
#
# As a result, LEAP *requires* access to the plain-text
# User-Password, or the NT-Password attributes.
# 'System' authentication is impossible with LEAP.
#
leap {
}
# Generic Token Card.
#
# Currently, this is only permitted inside of EAP-TTLS,
# or EAP-PEAP. The module "challenges" the user with
# text, and the response from the user is taken to be
# the User-Password.
#
# Proxying the tunneled EAP-GTC session is a bad idea,
# the users password will go over the wire in plain-text,
# for anyone to see.
#
gtc {
# The default challenge, which many clients
# ignore..
#challenge = "Password: "
# The plain-text response which comes back
# is put into a User-Password attribute,
# and passed to another module for
# authentication. This allows the EAP-GTC
# response to be checked against plain-text,
# or crypt'd passwords.
#
# If you say "Local" instead of "PAP", then
# the module will look for a User-Password
# configured for the request, and do the
# authentication itself.
#
auth_type = PAP
}
## EAP-TLS
#
# See raddb/certs/README for additional comments
# on certificates.
#
# If OpenSSL was not found at the time the server was
# built, the "tls", "ttls", and "peap" sections will
# be ignored.
#
# Otherwise, when the server first starts in debugging
# mode, test certificates will be created. See the
# "make_cert_command" below for details, and the README
# file in raddb/certs
#
# These test certificates SHOULD NOT be used in a normal
# deployment. They are created only to make it easier
# to install the server, and to perform some simple
# tests with EAP-TLS, TTLS, or PEAP.
#
# See also:
#
# http://www.dslreports.com/forum/remark,9286052~mode=flat
#
tls {
#
# These is used to simplify later configurations.
#
certdir = ${confdir}/certs
cadir = ${confdir}/certs
private_key_password = whatever
private_key_file = ${certdir}/server.pem
# If Private key & Certificate are located in
# the same file, then private_key_file &
# certificate_file must contain the same file
# name.
#
# If CA_file (below) is not used, then the
# certificate_file below MUST include not
# only the server certificate, but ALSO all
# of the CA certificates used to sign the
# server certificate.
certificate_file = ${certdir}/server.pem
# Trusted Root CA list
#
# ALL of the CA's in this list will be trusted
# to issue client certificates for authentication.
#
# In general, you should use self-signed
# certificates for 802.1x (EAP) authentication.
# In that case, this CA file should contain
# *one* CA certificate.
#
# This parameter is used only for EAP-TLS,
# when you issue client certificates. If you do
# not use client certificates, and you do not want
# to permit EAP-TLS authentication, then delete
# this configuration item.
CA_file = ${cadir}/ca.pem
#
# For DH cipher suites to work, you have to
# run OpenSSL to create the DH file first:
#
# openssl dhparam -out certs/dh 1024
#
dh_file = ${certdir}/dh
random_file = ${certdir}/random
#
# This can never exceed the size of a RADIUS
# packet (4096 bytes), and is preferably half
# that, to accomodate other attributes in
# RADIUS packet. On most APs the MAX packet
# length is configured between 1500 - 1600
# In these cases, fragment size should be
# 1024 or less.
#
# fragment_size = 1024
# include_length is a flag which is
# by default set to yes If set to
# yes, Total Length of the message is
# included in EVERY packet we send.
# If set to no, Total Length of the
# message is included ONLY in the
# First packet of a fragment series.
#
# include_length = yes
# Check the Certificate Revocation List
#
# 1) Copy CA certificates and CRLs to same directory.
# 2) Execute 'c_rehash '.
# 'c_rehash' is OpenSSL's command.
# 3) uncomment the line below.
# 5) Restart radiusd
# check_crl = yes
# CA_path = /path/to/directory/with/ca_certs/and/crls/
#
# If check_cert_issuer is set, the value will
# be checked against the DN of the issuer in
# the client certificate. If the values do not
# match, the cerficate verification will fail,
# rejecting the user.
#
# check_cert_issuer = "/C=GB/ST=Berkshire/L=Newbury/O=My Company Ltd"
#
# If check_cert_cn is set, the value will
# be xlat'ed and checked against the CN
# in the client certificate. If the values
# do not match, the certificate verification
# will fail rejecting the user.
#
# This check is done only if the previous
# "check_cert_issuer" is not set, or if
# the check succeeds.
#
# check_cert_cn = %{User-Name}
#
# Set this option to specify the allowed
# TLS cipher suites. The format is listed
# in "man 1 ciphers".
cipher_list = "DEFAULT"
#
# This configuration entry should be deleted
# once the server is running in a normal
# configuration. It is here ONLY to make
# initial deployments easier.
#
make_cert_command = "${certdir}/bootstrap"
#
# Session resumption / fast reauthentication
# cache.
#
cache {
#
# Enable it. The default is "no".
# Deleting the entire "cache" subsection
# Also disables caching.
#
# You can disallow resumption for a
# particular user by adding the following
# attribute to the control item list:
#
# Allow-Session-Resumption = No
#
# If "enable = no" below, you CANNOT
# enable resumption for just one user
# by setting the above attribute to "yes".
#
enable = no
#
# Lifetime of the cached entries, in hours.
# The sessions will be deleted after this
# time.
#
lifetime = 24 # hours
#
# The maximum number of entries in the
# cache. Set to "0" for "infinite".
#
# This could be set to the number of users
# who are logged in... which can be a LOT.
#
max_entries = 255
}
}
# The TTLS module implements the EAP-TTLS protocol,
# which can be described as EAP inside of Diameter,
# inside of TLS, inside of EAP, inside of RADIUS...
#
# Surprisingly, it works quite well.
#
# The TTLS module needs the TLS module to be installed
# and configured, in order to use the TLS tunnel
# inside of the EAP packet. You will still need to
# configure the TLS module, even if you do not want
# to deploy EAP-TLS in your network. Users will not
# be able to request EAP-TLS, as it requires them to
# have a client certificate. EAP-TTLS does not
# require a client certificate.
#
# You can make TTLS require a client cert by setting
#
# EAP-TLS-Require-Client-Cert = Yes
#
# in the control items for a request.
#
ttls {
# The tunneled EAP session needs a default
# EAP type which is separate from the one for
# the non-tunneled EAP module. Inside of the
# TTLS tunnel, we recommend using EAP-MD5.
# If the request does not contain an EAP
# conversation, then this configuration entry
# is ignored.
default_eap_type = md5
default_eap_type = mschapv2
# The tunneled authentication request does
# not usually contain useful attributes
# like 'Calling-Station-Id', etc. These
# attributes are outside of the tunnel,
# and normally unavailable to the tunneled
# authentication request.
#
# By setting this configuration entry to
# 'yes', any attribute which NOT in the
# tunneled authentication request, but
# which IS available outside of the tunnel,
# is copied to the tunneled request.
#
# allowed values: {no, yes}
copy_request_to_tunnel = no
# The reply attributes sent to the NAS are
# usually based on the name of the user
# 'outside' of the tunnel (usually
# 'anonymous'). If you want to send the
# reply attributes based on the user name
# inside of the tunnel, then set this
# configuration entry to 'yes', and the reply
# to the NAS will be taken from the reply to
# the tunneled request.
#
# allowed values: {no, yes}
use_tunneled_reply = no
#
# The inner tunneled request can be sent
# through a virtual server constructed
# specifically for this purpose.
#
# If this entry is commented out, the inner
# tunneled request will be sent through
# the virtual server that processed the
# outer requests.
#
virtual_server = "inner-tunnel"
}
##################################################
#
# !!!!! WARNINGS for Windows compatibility !!!!!
#
##################################################
#
# If you see the server send an Access-Challenge,
# and the client never sends another Access-Request,
# then
#
# STOP!
#
# The server certificate has to have special OID's
# in it, or else the Microsoft clients will silently
# fail. See the "scripts/xpextensions" file for
# details, and the following page:
#
# http://support.microsoft.com/kb/814394/en-us
#
# For additional Windows XP SP2 issues, see:
#
# http://support.microsoft.com/kb/885453/en-us
#
# Note that we do not necessarily agree with their
# explanation... but the fix does appear to work.
#
##################################################
#
# The tunneled EAP session needs a default EAP type
# which is separate from the one for the non-tunneled
# EAP module. Inside of the TLS/PEAP tunnel, we
# recommend using EAP-MS-CHAPv2.
#
# The PEAP module needs the TLS module to be installed
# and configured, in order to use the TLS tunnel
# inside of the EAP packet. You will still need to
# configure the TLS module, even if you do not want
# to deploy EAP-TLS in your network. Users will not
# be able to request EAP-TLS, as it requires them to
# have a client certificate. EAP-PEAP does not
# require a client certificate.
#
#
# You can make PEAP require a client cert by setting
#
# EAP-TLS-Require-Client-Cert = Yes
#
# in the control items for a request.
#
peap {
# The tunneled EAP session needs a default
# EAP type which is separate from the one for
# the non-tunneled EAP module. Inside of the
# PEAP tunnel, we recommend using MS-CHAPv2,
# as that is the default type supported by
# Windows clients.
default_eap_type = mschapv2
# the PEAP module also has these configuration
# items, which are the same as for TTLS.
copy_request_to_tunnel = no
use_tunneled_reply = no
# When the tunneled session is proxied, the
# home server may not understand EAP-MSCHAP-V2.
# Set this entry to "no" to proxy the tunneled
# EAP-MSCHAP-V2 as normal MSCHAPv2.
# proxy_tunneled_request_as_eap = yes
#
# The inner tunneled request can be sent
# through a virtual server constructed
# specifically for this purpose.
#
# If this entry is commented out, the inner
# tunneled request will be sent through
# the virtual server that processed the
# outer requests.
#
virtual_server = "inner-tunnel"
}
#
# This takes no configuration.
#
# Note that it is the EAP MS-CHAPv2 sub-module, not
# the main 'mschap' module.
#
# Note also that in order for this sub-module to work,
# the main 'mschap' module MUST ALSO be configured.
#
# This module is the *Microsoft* implementation of MS-CHAPv2
# in EAP. There is another (incompatible) implementation
# of MS-CHAPv2 in EAP by Cisco, which FreeRADIUS does not
# currently support.
#
mschapv2 {
}
}